
Polymer Processing:
Application of  

X-rays & Neutrons

Anthony J. Ryan

•Reaction induced phase separation in polyurethane

•PU foam is reactively processed from a dense liquid 
to a porous flexible solid

•PU thin films are coated from solution

•SAXS & SANS elucidate structure evolution

•High performance paint – PU-acrylic blend

•Core-shell structure by contrast variation
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Time resolved experiments add value
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H-bonding 
from FTIR

“An FTIR Study of Reaction Kinetics and Structure 
Development in Model Polyurethane Foam Systems”, M.J. 
Elwell, A. J. Ryan, H.J. Grünbauer, and H.C. Van Lieshout, 
Polymer, 37, 1353, (1996).
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Average hard segment sequence length ~ 1.2 at onset of phase separation
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Forced adiabatic SAXS apparatus

“Microphase Separation Dynamics during Polyurethane Foam Formation: Real-time Synchrotron SAXS 
Experiments”, M.J. Elwell, S. Mortimer and A.J. Ryan Macromolecules, 27, 5428 (1994).
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Is it spinodal decomposition?

Peak that grows at fixed q*
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Looks like spinodal decomposition!
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concentration fluctuations
with “right” length

grow in amplitude

A real-space 
view  of 

early stage 
spinodal

decomposition 

LATER STAGE SPINODAL DECOMPOSITION

SIMULATION BY NIGEL CLARKE



4.2 parts water

2.2 parts water

Smells like spinodal decomposition!
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Deff = −
2R(q)

q2

mobility
free energy
gradient

flux against the 
concentration
gradient

n bicontinuous block copolymer 
morphology

n HS continuous at low volume fractions
n stiff polymer because of HS continuity
n solidification by HS vitrification

n Ginzburg-Landau free energy functional 
implicit in data analysis

But what does it mean? 
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“Urea Hard Segment Morphology in Flexible Polyurethane 
Foam”,  R. Neff, A Adedeji, C.W. Macosko and A.J. Ryan, 
J. Polym Sci, Polym. Phys. Ed., 36, 573 (1998).

• F = a2ψ2 + c1(∇ψ)2 + c2(∇2 ψ)2 +……….
• Cahn Hilliard only uses first two terms in the 

order parameter ψ
• Cell dynamics simulations also use the first 

two terms in the order parameter ψ
• Teubner-Strey micro-emulsion structure 

factor uses the first three terms 
• I(q) = 1/ a2+ c1q2 + c2q4 to model SAXS

Spinodal kinetics imply Ginsburg-Landau 
free-energy functional



time

Simulation of PU structure using cell dynamics 
based on the time-dependent Ginsburg-Landau

“Structure development in multi-block copolymerisation: comparison of experiments with cell dynamics simulations.”
I.W. Hamley, J.L. Stanford, A.N. Wilkinson, M.J. Elwell, A.J. Ryan, Polymer 41, 2569 (2000).
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Teubner-Strey Bicontinuous Microemulsion Model

I(q) = 1/ a2+ c1q2 + c2q4

Average domain size 
d = ((a2/c2)2/2+(c1/4c2))-1/2

Short range order  
ξ=2π((a2/c2)1/2/2-(c1/4c2))-1/2

Amphiphilicity
fa = c1/(4a2c2)1/2

“Phase Separation in Flexible Polyurethane Foam.”
Li, Wu; Ryan, Anthony J.; Meier, Ingrid K.  
Macromolecules 35, 5034-5042 (2002).



Teubner-Strey Model: structure information
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Modelling block copolymer structuring using cell dynamics

100
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1000
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triblock copolymer AFMTEM of a polyurethane

Real space structures 
from microscopy

disordered fluctuations ordered
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Added value from time resolution

“In-situ Studies of Structure Development during the Reactive Processing of Model Flexible 
Polyurethane Foam using FTIR Spectroscopy, Synchrotron SAXS and Rheology”,  
M.J. Elwell, A. J. Ryan, H.J. Grünbauer, and H.C. Van Lieshout, 
Macromolecules, 29, 2960 (1996).
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start of reaction   p=0

density reduction

microphase separation p=0.55
cell opening p≈ 0.6
constant density
modulus growth p = 0.7
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FOLLOWING POLYURETHANE FOAM THROUGH THE 
PHASE DIAGRAM DURING PROCESSING

Funding : Dow Chemicals, Shell Chemicals, Air Products, Johnson & Johnson
Researchers : Mike Elwell, Wu Li, John Stanford & Paul Cookson 

n Premade polymer
n Dissolved in solvent (THF)
n Coated on former
n Solvent evaporated
n Washed to remove last traces 

of solvent!
n Dried in rotating oven
n Problems in processing and 

on storage

A more interesting polyurethane

Why did we do SANS?

heat & 
solvent



D and H soft segments give contrast 
with different magnitude & opposite sign
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SAXS & SANS on labelled PU
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Molecular Dimensions of PU 
by zero-sum contrast SANS

“Temperature Dependence of Chain Conformations in a Model Block 
Copolyurethane” S. Naylor, N. J. Terrill, G-E. Yu, S. Tanodekaew, W. Bras, S. 
M. King, C. Booth and A.J. Ryan, Polym. Int., 44 371 (1997).
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10911/259 in sucrose solution
with variable density ρ(medium),
background substracted

 in water
 in sucr sol 1.05 g/cm3 
 in sucr sol 1.08 g/cm3

 in sucr sol 1.11 g/cm3

 in sucr sol 1.12 g/cm3

 in sucr sol 1.13 g/cm3

 in sucr sol 1.14 g/cm3

 in sucr sol 1.15 g/cm3

Nanostructured paint

A dispersion of
~ 50 nm particles
of PU ionomer in 
acrylic monomer

polymerisation of  
acrylic leads to phase 
separation inside the
particles

AFM of latex particles
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Contrast variation in SAXS
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Volume fraction of the polymer in the solutions 0.083
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•SAXS patterns of diluted 
suspensions of particles comprising 
35% PU in water sucrose solution
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“The application of distance distribution functions to structural analysis of core-shell particles.”
Mykhaylyk, O. O.; Ryan, A. J.; Tzokova, N.; Williams, N., Journal of Applied Crystallography 2007, 40, 506-511.

The method chosen for modelling
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“The application of distance distribution functions to structural analysis of core-shell particles.”
Mykhaylyk, O. O.; Ryan, A. J.; Tzokova, N.; Williams, N., Journal of Applied Crystallography 2007, 40, 506-511.



4 sets 
of three 

contrasts

experiment        model

Core-shell modelling

•DDF obtained from experimental 
SAXS patterns (left-hand side) or 
calculated for core-shell particles
(Rc=300 Å, Rs=370 Å, ξc=0.379 el/ 
Å3, ξs=0.364 el/ Å3 surrounded by 
different contrast media)

•The 12 experimental DDF have 
been simultaneously fitted by the 
model of core-shell particles with 
normal distribution of electron 
densities of both core and the shell

•Rc=258 Å, Rs=365 Å, 
•ξc=0.381 el/ Å3, ξs=0.366 el/ Å3

§σξc = 0.018 el/Å3, σξs = 0.005 el/Å3



Core-shell modelling

scsc dddqqrqrqIPPrp ρρρρ ∫∫∫
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Parameters obtained from fitting
Rc=260 Å, Rs=380 Å, 
ξc=0.381 el/ Å3, ξs=0.366 el/ Å3

σξc = 0.018 el/Å3, σξs = 0.005 el/Å3

ØDouble integration over probability distribution 
functions of electron densities of the core part 
P(ξc) and the shell part P(ξs) of the particles
ØThe result of integration is an analytical 
expression, used for fitting all twelve DDF 
calculated form experimental SAXS pattern

ØThe model reproduce most of 
the features observed in the DDF 
calculated from experimental 
SAXS data
ØThe parameters are consistent 
with the results obtained from 
TEM   Rs=370 Å, 
AFM   Rs=360 Å

“The application of distance distribution functions to structural analysis of core-shell particles.”
Mykhaylyk, O. O.; Ryan, A. J.; Tzokova, N.; Williams, N., Journal of Applied Crystallography 2007, 40, 506-511.

200nm

But the shell has its 
own internal structure

A TEM image of a phase
separated polyurethane

An AFM phase image 
of a dried film of latex

core 
polyacrylate

PU 
hard 
block

PU
soft block

NOT

BUT



200nm

Trying to model the shell structure 

Best fits from a model that has density variations in both core and shell
“The application of distance distribution functions to structural analysis of core-shell particles.”
Mykhaylyk, O. O.; Ryan, A. J.; Tzokova, N.; Williams, N., Journal of Applied Crystallography 2007, 40, 506-511.

SAXS patterns of a dried film 
on different SAXS cameras
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 ESRF, Dubble, 8 metres
 Daresbury Lab, station 16.1, 6 metres
 Nanostar, 1.5 metres
 Daresbury Lab, station 6.2, 3 metres

d =21 Å
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(recorded using different camera length)
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SAXS of dried films

PU/PA = 75/25

PU/PA = 35/65, 20/80

PU/PA = 50/50

The structure of dried films obtained
from latexes with different ratio of PU/PA

Using the data to optimise the formulation

a

Drying

Solution Film

2R
Parameters obtained from SAXS measurements
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35% PU
R = 34.4 nm
a = 64.2 nm

a,
 n
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R , nm

50% PU
R = 17.5 nm
a = 33 nm relation between a and R

for close-packed structure of spheres
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Summary
• Scattering can give valuable insight into 

materials processing
• Scattering should be used in combination 

with other techniques
• The models used should be fit for purpose

Can improve processes
Reduce environmental impact
Increase profits!


